
S of twa re En g i nee ri n g Res ea rc h/D eve lope r
Collaborations in 2004 (C104)

Final Report
(External Re-lease)

Tom Pressburger, ARC
Lawrence Markosian, QSS Group Inc. (ARC)

Software Engineering Research/Developer Collaborations (C104) Final Report

Table of Contents
1 Overview ... 2

Sununary of technology provjder/software development project collaborations 4 2
2.1 ARC: “On Orbit Software Analysis” using C Global Surveyor 4
2.2 GSFC: “GSFC FSB Application of Perspective-Based Inspections” 5
2.3 JPL: “Finding Defect Patterns in Reused Code” using Orthogonal Defect
Classification 6
2.4
2.5 MSFC: “Static Analysis of Flight Software” using Coverity SWAT and C
Global Surveyor .. 7
2.6

Paths to further infusion of the technologies ... 8
3.1 CGS ... 8

3.3 ODC .. 9
3.4 Codesurfer .. 10
3 . 5 Coverity SWAT 10

...
JSC: “Can Codesurfer Increase Inspection Efficiency?” 6

USA: “USA Application of Perspective-Based Inspections” 8

3.2 Perspective-Based Inspections .. 9

3

...
4 Technology transfer lessons learned ... I O
5 Acknowledgements ... 11
6 Acronyms .. 12
7 References ... 13

7.2 Technologies ... 13

7.2.2 Perspective-Based Inspections .. 14
Orthogonal Defect Classification .. 14

7.2.4 Codesurfer .. 15

7.1 Collaboration Reports ... 13

7.2.1 CGS ... 13

7.2.3

7.2.5 Coverity SWAT ... 15

1

Software Engineering Research/Developer Collaborations (C104) Final Report ,

1 Overview
In 2004, six collaborations between software engineering technology providers and
NASA software development personnel deployed a total of five software engineering
technologies (for references, see Section 7.2) on the NASA projects. The main purposes
were to benefit the projects, infuse the technologies if beneficial into NASA, and give
feedback to the technology providers to improve the technologies. Each collaboration
project produced a final report (for references, see Section 7.1). Section 2 of this report
summarizes each project, drawing from the finaI reports and communications with the
software developers and technology providers. Section 3 indicates paths to further
infusion of the technologies into NASA practice. Section 4 summarizes some technology
transfer lessons learned. Section 6 lists the acronyms used in this report.

Below we restate our success criteria from our S A W proposal to oversee the
collaborations:

“We would like one of the main success criteria to be that the research products used in the
collaborations are adopted for future software development by the teams (or organization).
However, this is unrealistic for mid TRL-level research products that may lack productization, and
it may be unrealistic for high TRL or even for commercial products (for example, the license fee
may be too high for a single team to bear). Thus we have identified several other success criteria.

1.

2.

3.

4.

5.

6.

7.

The success criteria of the collaboration projects funded under this proposal are met. This
includes a positive rating for each product on the evaluation criteria metric.
The research product is adopted by the collaborating software development team for current
use.
The research product is included in a list of recommended development practices at a NASA
Center or by contractor.
The software development team using the product provides feedback, including performance
data, to the research team to guide future development of the product.

the development project or by a successor development project.
The researchers and consumers recommend to the CTO methods of making future versions
of the research products available within NASA (for example, by Open Sourcing or by
licensing the technology commercially or to organizations such as the Southwest Research
Institute).
Independent of the success of the collaborations, “lessons learned” regarding the challenges
and success factors for software development technology infusion within NASA.”

Six months after the funded collaboration period, :he research p;odi;ct is still being ii326 by

A modification of 3 is “The research product is recommended for a branch, division, or
directorate at a center”. That is the statement for which column 3 applies in the table below.

Also relevant to judging the impact of the collaborations is the penetration factor (PF) used
for SARP quarterly reviews:

PF 8: Data passed back to project;
PF 9: Results actually used by the project.

2

Software Engineering Research/Developer Collaborations ((2104) Final Report

ARC
CGS on ISS

payload
software

GSFC
PBI in Flight

Software
Branch

JPL
ODC 011

ground
software

JSC
CodeSurfer

for
Inspections

of ISS
1 software

SWAT &
MSFC

The following table sumrnaiizes the impacts of the technology in each collaboration
regarding the penetration factor and success criteria as well as brief notes.

9

9

8 now,
will soon

be

9

9

9

Y = Yes A = Anticipated in 2005 - 2006 timeframe

Y '

IProject I pF

software L

1

Y

Y

Y

2
__

A

Y

Y

;ondit
"E!!
In cos

Y

3

Y

Y

snditic
!a! on
cost

Y

4

Y

Y

Y

5

A

A

A

(7 I
Y

I y

Impacts

Found 2 errors to be fixed.
Useful feedback to the CGS
developers.

PBI led to changes in a project's
development plan. Expect roll
out of PBI in FSB standards.

Training occurred in several JPL
organizations. ODC led to several
recommendations that will be usec
in project maintenance phase.
Collaboration is continuing to
infuse ODC on another project.

Found 12 additional (minor)
defects. Tool is continuing to be
used and promulgated.

Useful feedback to the CGS
developers. SWAT found 9
defects worth fixing in the
software, some of which had
sscaped formal testing.

Found 6 "majot" defects, several 01
irvhich had escaped previous
nspections, and/or occurred in
*eused code. Will continue to
38 used and will be recommended
3s an optional process.

Software Engineering Research/Developer Collaborations (C104)

_ -

Final Report

2 Summary of technology providerkoftware
development project collaborations

This section describes briefly each collaboration: its objectives, what transpired, its
impact on the project, and the success criteria that were met.

2. I ARC: “On Orbit Software Analysis” using C Global Surveyor

In this project, the project applied the source code analysis tool C Global Surveyor
(http://ti.arc.nasa.gov/ase/cgs/), developed within the Automated Software Engineering
group at NASA Ames under the Intelligent Systems program of Computing, Information,
and Computing Technoiogies, to a payload software module for tine inrernationai Space
Station (ISS). The tool analyzes C programs to find dead code and memory access errors:
de-references of null pointers and out-of-bounds array accesses, and in some cases
uninitialized variables. The main benefits expected of applying the tool were finding
errors in the software, validating the tool, and giving feedback to improve the tool.

The tool reports on the code by classifying operations as green, orange, or red. Green
operations never result in a runtime error of the above types. Red operations always result
in a runtime error. Orange operations are those for which the tool cannot determine one
way or the other whether that operation would cause a runtime error (commonly referred
to as “warnings”). An issue with such analysis tools is their scalability and the precision
of their analysis. CGS was designed to run quickly on relatively large software and be
precise about green operations; that is, it categorizes relatively few error-free operations
as orange. It is probably less precise, though much faster, than Polyspace Verifier,

errors ,pight be classified by CGS as orange. The designers of CGS claim that its
purpose is to do a complete coverage analysis of a software system to quickly narrow
down the operations that need to be analyzed or tested further for whether they can cause
an error. This follows because it was designed to be precise about which operations are
green; thus, the amount of code for which further study is required will be minimized.
The research infusion team had somewhat mischaracterized CGS’s purpose as to flag
errors in software, which requires the k x l tc; be moie precise about which operations are
red. CGS had been applied to, and specialized in some ways for, Mars Pathfinder
software and achieved 80% precision on it; that is, 80% of the operations were classified
as red or green. This collaboration was something of an experiment to see if the tool
could provide benefit for the analysis of other flight software.

The tool turned out to be about 50% precise on the module. If the tool were enhanced to
deal with certain features of the C language and the application, the precision would have
been about 90%. The project found its user interface cumbersome.

anether static andysis tCCl, about red !lperatk!cs; that is, operatim thzt a!%l:zys cause

Software Engineering Research/Developer Collaborations (C104) Final Report

There were four important positive ou tcoines from the collaboration. First, dead code and
an uninitialized variable were found in the module. Second, feedback was given to the
CGS developers about new capabilities that the tool required to analyze certain features
of C and handle this flight software. Third, serendipitously, because of his involvement
in the collaboration, one of the CGS developers decided to apply another tool to the
module which pinpointed a memory leak that had been suspected by the project. Lastly,
as stated in the project’s overview, “We continue to interface with the Technology
Developers informally to derive Tool modifications, and to explore future uses of the tool
for other collaborative efforts.”

Success criteria 4 and 7 wese met.

2.2 GSFC: “GSFC FSB Application of Perspective-Based
Inspections”

The goal of this collaboration was to produce Flight Software Branch (FSB) process
standards for software inspections which could be used across three new missions within
the FSB. The standard was developed by Dr. Forrest Shull (Fraunhofer Center for
Experimental Software Engineering, Masyland) using the Perspective-Based Inspection
approach, (PBI research has been funded by SARP), then tested on a pilot Branch project.
Because the short time scale of the collaboration ruled out a quantitative evaluation, it
would be decided whether the standard was suitable for roll-out to other Branch projects
based on a qualitative measure: whether the standard received high ratings from Branch
personnel as to usability and overall satisfaction. The project used for piloting the
Pel-spective-Based Inspection approach was a multi-mission framework designed for
reuse. This was a good choice because key representatives from the three new missions
would be involved in the inspections.

The perspective-based approach was applied to produce inspection procedures tailored
for the specific quality needs of the branch. The technical infomiation to do so was
largely drawn through a series of interviews with Branch personnel. The framework team
used the procedures to review requirements. The inspections were useful for indicating
that a restructuring of the requirements document was needed, which led to changes in
the development project plan.

The standard was sent out to other Branch personnel for review. Branch personnel were
very positive. However, important changes were identified because the perspective of
Attitude Control System (ACS) developers had not been adequately represented, a result
of the specific personnel interviewed.

The net result is that with some further work to incorporate the ACS perspective, and in
synchrony with the roll out of independent Branch standards, the PBI approach will be
implemented in the FSB. Also, the project intends to continue its collaboratioii with the
technology provider (Dr. Forrest Shull) past the end of the grant, to allow a more rigorous
quantitative evaluation.

5

Software Engineering Research/Developer Collaborations ((304) Final Report

Success criteria 1, 3,4, and 7 were met, and 2 and 5 are anticipated.

2.3 JPL: “Finding Defect Pafferns in Reused Code” using
Orthogonal Defect Classification

This effort used Orthogonal Defect Classification (ODC) to characterize defect reports
for code that will be reused in mission-critical ground software. The application of ODC
to NASA projects has been funded by SARP. The goal was to identify patterns of defects
prior to reuse of the code, and to successfully infuse ODC into a project. ODC, as
adapted for NASA by the researchers, characterizes anomaly reports using four attributes:
Activity, Trigger, Target, and Type.

There were several groups of players in this project: Software Quality Assurance (SQA),
JPL’s Software Quality Initiative (SQI), Dr. Robyn Lutz (JPL, Iowa State University),
and of course the ground software project. Dr. Lutz worked with the project to customize
the classification entries. The original idea was to have the project itself learn to do the
classification and analysis of anomaly reports on the software. However, the funding for
the collaboration was late, the project entered a busy period, and there was a JPL
reorganization, so instead people in SQA and SQI were taught the technique, and, with
help from the project, classified the anomalies. Dr. Lutz did the analysis and reported the
findings to the project. Infusing ODC into the SQA and SQI organizations was an
unexpected benefit of the collaboration.

The project was satisfied with the results of the ODC analysis. Though the ground
software project was not continued this year, so the software was not reused, the software
whose anomalies were analyzed was recently put into operation, and the analysis results
will be used to direct its maintenance. Another project by the same development team
could use an ODC analysis. There are funds remaining, and that project will employ
ODC. The project uses a bug tracking database that is compatible with ODC
classifications. This will help introduce ODC because the classification can be done
easily when the anomaly is reported, rather than later when it is more difficult to decipher
the anomaly report.

Success criteria 1, 2, 3,4, and 7 were met, and 5 is anticipated.

2.4 JSC: ‘Can CodeSurfer Increase Inspection Efficiency?”

Codesurfer (http://www.~rammatech.com/products/codesurfer/overview.html) is a
commercial tool from Grammatech, Inc. for browsing C code. It provides lists of
variables and constants used or set by functions, call graphs, pointer analysis, indications
of dead code, etc. The objective of this project was for the Software Assurance
organization to apply the tool during the inspection phase of an ISS software component,
to see if the tool made the inspections more time efficient and/or more productive; that is,
more defects found. Because the funding arrived late, and the acquisition took longer
than anticipated, the window for the inspection phase of the module was missed. It was
decided to apply CodeSurfer to the component anyway, as an experiment to compare

6

Final Report Software Engineering ResearchlDeveloper Collaborations ((304)

with previous inspection results. Also, Codesurfer was applied during inspection of
another ISS component.

The results show that the time required for doing an inspection using Codesurfer is
reduced from that for a manual inspectiol~, and the inspection is more productive. Their
final report states that manual code inspection required 17 hours, and only 12.25 hours
with Codesurfer. Manual code inspection found 8 defects, whereas 18 were found using
CodeSui-fer. Though the defects were all classified as minor, these are clear benefits.
However there were difficulties. There is a learning curve: the training helped, but the
project suggested that the tool would be difficult to use if there was a long time between
uses, so ideally, there should be people who use the tool more frequently. The tool
required that the code compile with one of the compilers provided with the tool: this ran
into problems because the code analyzed would only compile using a legacy compiler, so
some adaptation was required. Also, Software Assurance did not always readily have all
the required files. The vendor of Codesurfer, GrammaTech, Inc., was responsive, but
because of ITAR restrictions, the ISS code could not be sent to the vendor for their
assistance. The net effect was that setup time swamped inspection time. Obviously,
there is a learning curve, so setup time would be reduced in the future. The research
infusion team sees these as generic problems to be dealt with for code analysis tools.

The summary impact is that the Software Assurance organization plans to continue the
use of Codesurfer on C and C++ projects for reviews. They have demonstrated the tools
to the engineers who developed the ISS components, and are interested in collaborating
with other customers of Software Assurance in using the tool to troubleshoot software.

Success criteria 1, 2,4. and 7 were met.

2.5 MSFC: “Static Analysis of Flight Software” using Coverity
S W A 7 and C Giobai Surveyor

The objective of this effort was to apply two source code analysis tools to four flight
software components, to find errors, and characterize the utility of the tools. The
components varied in maturity from the coding and unit testing phase to the maintenance
phase. The two analysis tools were C Global surveyor (characterized above in Section
3.1) and Coverity, Inc.’s Software Analysis Toolset (SWAT) (http://coverity.com/). The
latter is a source code analysis tool for C programs that looks for certain types of errors,
such as use of uiiinitialized variables, out-of-bounds indices (buffer overrun), dead code,
and functions that should check their return value but don’t. It does not claim complete
coverage, in contrast to CGS, which does; that is, SWAT does not necessarily find all the
errors of a particular type.

A team from MSFC was trained at ARC in the use of CGS. This resulted in a number of
recommendations for the tool, similar to those found in the ARC collaboration. The tool
produced about 300 warnings for a couple of the modules; about 20% were analyzed, and
no errors were found. On the other hand, the technology developers reported that on one

7

Software Engineering Research/Developer Collaborations (C104) Final Report

of the MSFC applications, CGS was 95% precise. An update to CGS that fixed some of
the issues raised was delivered to MSFC, but it was not run again on their software.

The Coverity tool was applied to the components. It flagged a total of 74 errors in 14
minutes. Analysis of those errors by flight engineers resulted in no errors found in the most
mature component, but 9 in the other components were considered errors that were registered
to be fixed; four of these had escaped formal testing. A usability issue was brought to the
attention of Coverity.

The project concluded that the Coverity SWAT tool thus had a low false alarm rate and fast
execution times and was recommended for use in the project's software development process
if the associated licensing costs can be afforded.

Success criteria 1 (Coverity, not CGS), 4, 7, and a conditional 2 and 3 were met.

2.6 USA: '"USA Appjication of Perspective-Based inspecrions"

The Perspective-Based Inspection approach was applied by Dr. Forrest Shull in an ISS
software development project at United Space Alliance. The goal was to increase the
quality of the product, and increase inspection efficiency over previously used techniques.
Project personnel were interviewed to tailor the approach, and instruction was provided,
with actual software inspected as part of the instruction. Defects were found during that
inspection, which was surprising because that software was reused from a previous
version and hence thought to be defect free. After the course, Perspective-based
inspections of code were carried out, finding a major defect which had escaped previous
inspections. On a qualitative, subjective level, the response from the project team
consisted of only positive comments.

The experience was that less time was required per inspector, who also had a more
structured focus. It was noted that Perspective-Based Inspections required more
inspectors than the project's usual practice. The approach will be recommended initially
as an optional practice at USA. A kit was created to easily help craft perspectives for
smaller projects. The project recommended the approach for larger projects.

Success criteria 1, 2, 3, 4, and 7 were met, and 5 is anticipated.

3 Paths to further infusion of the technologies

3.1 CGS

The purpose of the CGS tool has been clarified to be not simply finding errors; as with
Coverity SWAT, so much as doing a full code coverage analysis that reduces the portions
of the code that must be further analyzed or tested to ascertain whether a class of runtime
errors are possible. This fits at the integration test phase of development as a certification
tool, rather than unit test, where SWAT naturally fits.

8

I

Software Engineering Research/Developer Collaborations (C104) Final Report

Some users complained about the lack of a GUI, but the CGS developers feel that
providing merely a color-coded presentation of results does not deal with the real issue of
providing assistance for the analysis of, andor construction of test cases for, orange
operations (those for which a runtime error occurring was not ruled out). Funding to
support development for this level of assistance is being sought--a possible SARP
proposal.

The tool exploits features of the Mars Pathfinder/MER (Mars Exploration Rover)
executive architecture; for example, it expects a linlit on the depth of nested structures. A
natural next application would be for the developers to run CGS on other JPL software
derived from MER. However, JPL tends not to want to send their code out of JPL, for
ITAR and other reasons. This is an issue because long visits to JPL by the CGS
developers are not feasible.

The collaborations involving CGS were an experiment in applying the tool to other flight
software at NASA; it was not known up front what the results would be. In the
collaborations, the tool was imprecise because it needed to be extended to account for:
the size of memory linked to hardware pointers; and handling bit fields. Also, the code
structure of some of the applications was very different than the Mars PathfinderMER
code structure, leading to imprecision.

3.2 Perspective-Based lnspecfions

Dr. Forrest Shull has developed a course syllabus for formal inspections. The syllabus
includes tailoring for the attendees. The Knowledge and Training subgroup of the
intercenter Software Working Group (SWG) is soliciting intcrest across NASA in the
course, with the intent of funding it in FY05 if interest is sufficient.

At the moment, implementing Perspective-Based Inspections has a tailoring component.
Dr. Shull expects that there is a limit to the number of perspectives that need to be
produced for software. He provided a tailoring kit to USA.

3.3 ODC

SQI at JPL now includes ODC attributes among the list of metrics it recommends
projects collect and analyze, and is willing to help projects interested in such metrics by
providing modest support to get started at implementing their use.

The Reliability organization at JPL is rolling out a next generation anomaly reporting
system called PRS (Problem Reporting System). It is being piloted on a flight project. It
is extensible, built on a database. JPL is looking into which new fields and pull downs are
needed so that PFRs (Problem Failure Reports) entered into PRS support ODC. The idea
is to do an ODC analysis of Build 1 for the flight project to use in adjusting software

9

Software Engineering Research/Developer Collaborations ((2104) Final Report

development processes for Build 2. If this is effective on the flight project, then PRS and
ODC would be rolled out to other projects.

More generally, the Metrics subgroup of the SWG (Software Working Group) is working
on tools to get metrics established on projects across NASA. One of their tools is a
ProjectType-Goal-Metric matrix which is an aid to deciding which metrics should be
collected to achieve a particular goal on a certain class of project. The research infusion
team has been trying to connect the technology provider with the Metrics subgroup to see
how ODC could be worked into the matrix, or find other avenues for infusion of ODC
across NASA.

3.4 Codesurfer

Codesurfer seems to be reasonably priced; however, infrequent use would seem to be
ineffective. It thus would be fit for use by software developers or certain software
assurance personnel who would apply it more or less regularly. It does require
compilation of code with one of their sets of compilers, which cannot always be done on
legacy code. Another collaboration using this tool will take place at the IVVF, where it
could have regular use if the collaboration is successful. Codesurfer seems to exemplify
a class of research products whose infusion may best be achieved by supporting a
collaboration at each center, so as to allow each center the opportunity to “put its toe in
the water”. See the next section about an agency wide tools acquirer.

3.5 Coverify S WA T

Coverity SWAT seems effective, and attempts are being made to negotiate favorable
licensing arrangements. JPL has a lab-wide tools acquirer that gets site licenses for tools,
and then charges projects for their use. Could this work at other centers? Could an
agency-wide tools acquirer be instituted?

4 Technology transfer lessons learned

1. Some developers are not proficient at research-oriented activities and need
gnidafice ar?d cversight. These teams are likely to benefit from more detailed pro
,forma documentation or templates (kick-off meeting agenda, project plan, reports).
For specific categories of tools (such as source code analysis tools) we can
provide very detailed templates. They also require frequent oversight (a) to be
sure communication is occurring between developers and tech vendors and (b) to
be sure that the schedule is being followed. Not all the projects require this level
of support but it is likely to benefit Research Infusion by promoting uniform,
higher-quality collaboration practice.

2. There are various answers to the question “What is the next step” - from research
infusion to technology transfer. A general solution is unlikely. Some technologies

10

Software Engineering Research/Developer Collaborations (C104) Final Report

are readily integrated and generalized into a parent organization’s existing
processes (for example, Perspective-based Inspections at GSFC) - they are
modifications to existing processes. Various other technology-specific approaches
may be appropriate; e.g., PBI may be supported by the Software Engineering
Initiative’s Training strategy.

3. Tighter qualification of technology/project combination may be needed. One of
the source code analysis tools used at ARC and MSFC had previously been
successfully applied to NASA software, but software that had different technical
features. The tool did not transition well to software that did not have these
features. Also, the appropriate lifecycle context and purpose for the tool (in this
case) may not have been clear to the development teams.

4. Collaborations’ project plans should explicitly include an iterative approach to
technology application, scaling up with each iteration, as cited in the GSFC and
JPL collaborations’ final reports.

5 . To succeed, training and continued support are needed. For example, USA
received onsite training on applying PBI technology to its own application. This
reduced risk and cost as well, since part of the target application was used in the
training session. “The most successful way to do tech transfer is to put a member
of the [technology vendor tcam] on the development team” - Matt Barry, JPL,
(paraphrased) communication to the authors.

6. Overall, Research Infusion’s first set of completed collaborations supports the
hypothesis that with selection of appropriate technologies, matching of
technology with software. development team, and guidance and oversight,
infusion of new software engineering technologies can be performed successfully
on a minimal budget.

5 Acknowledgements

This report incorporates material and suggestions from the following individuals.

Research Infusion Team

Benedetto Di Vito, LaRC
Martin Feather, JPL
Michael Hinchey, GSFC
Luis Trevino, MSFC

Project Members and Technology Providers (TP)

Susanne Moran, Intrinsyx (ARC)
Guillaunie Brat, RIACS (ARC) (TP)

Software Engineering Research/Developer Collaborations (C104)

~ ~-

Final Report

Arnaud Venet, Kestrel Technology (ARC) (TP)
Elaine Shell, GSFC
Michael Stark, GSFC
Michael Tilley, Raytheon (GSFC)
Forrest Shull, Fraunhofer Center for Experimental Software Engineering, Maryland (TP)
Scott Morgan, JPL
Martha Berg Strain, JPL
Steve Rockwell, JPL
Tuan Do, JPL
Robyn Lutz, JPL & Iowa State University (TP)
Carmen Mikulski, JPL (TP)
Mark Markovich, SAIC (JSC)
Dan Freund, JSC
Carl Soderland, JSC
Tara Ruttley, JSC
Scott Akridge, MSFC
Jerry Crook, Lockheed Martin (MSFC)
Justin Thomas, USA

6 Acronyms

ACS: Attitude Control System
ARC: NASA Ames Research Center
CGS: C Global Surveyor, a static analysis tool for C software developed at NASA Ames.
FSB: might Software Branch (GSFC)
FSW: Flight Software
GSFC: NASA Goddard Space Flight Center
ISS: International Space Station
ITAR: International Traffic in Arms Regulations
N V F : NASA Independent Verification and Validation Facility (West Virginia)
JPL: NASA Jet Propulsion Laboratory
JSC: NASA Johnson Space Center
LaRC: NASA Langley Research Center
MER: Mars Exploration Rover
MSFC: NASA Marshall Space Flight Center
NASA: National Aeronautics and Space Administration
ODC: Orthogonal Defect Classification
PBI: Perspective-Based Inspections
PF: Penetration Factor
PFR: Problem Failure Report
PRS: Problem Reporting System
SARP: Software Assurance Research Program (NASA Office of Safety and Mission
Assurance)
SQA: Software Quality Assurance
SQI: Software Quality Initiative (JPL)

12

Software Engineering Research/Developer Collaborations (C104) Final Report

SWAT: Software Analysis Toolset (from Coveri ty, Inc.)
SWG: Software Working Group
TRL: Technology Readiness Level
USA: United Space Alliance

7 References

7.1 Collaboration Reports

“On-Orbit Software Analysis”, NASA ARC, Susanne Moran, POC.

“GSFC FSB Application of Perspective-Based Inspections,” NASA GSFC, Elaine Shell,
YOC.

“Research Infusion Collaboration: Finding Defect Patterns in Reused Code,” NASA JPL,
Robyii Lutz and Scott Morgan, with contributors Tuan Do, Carmen Mikulski, Martha
Berg Strain, Steve Rockwell, and Belinda Wilkinson.

“Can Codesurfer Increase Code Inspection Efficiency?”, NASA JSC, Mark Markovich,
POC.

“Static Analysis of Flight Software,” NASA MSFC, Scott Akridge, POC.

“USA Application of Perspective-Based Inspe.ctions,” United Space Alliance, Justin
Thomas, POC.

7.2 Technologies

Technologies deployed in 2004 are described at
1ittp://ic.arc.nasa.~o~~/researcJiinfusion/mate1-ials/2004/index.p1~p . There are also the
€011 owing references.

7.2.1 CGS

See http://ti.arc.nasa.~ov/ase/crzs/index.htInl

Arnaud Venet and Guillauine Brat, “Precise and Efficient Static h a y Bound Checking
for Large Embedded C Programs,” Proceedings of the International Conference on
Programming Language Design and Implementation (PLDI’04), Washington DC, USA ,
pp. 231-242, ACM Press 2004.

13

Software Engineering Research/Developer Collaborations (C104) Final Report

Guillaume Brat and Arnaud Venet, “Precise and Scalable Static Program Analysis of
NASA Flight Software,” Proceedings of the 2005 IEEE Aerospace Conference, Big Sky,
MT, USA, March 5-12,2005, E E E Press 2005.

7.2.2 Perspective-Based Inspections

Sliull F., Rus I., and Basili V. R., “How Perspective-Based Reading Can Improve
Requirements Inspections,“ EEE Computer, vol. 33, no. 7, pp. 73-79, July 2000.

Travassos G. H., Shull F., Fredericks M., and Basili V. R., “Detecting Defects in Object-
Oriented Designs: Using Reading Techniques to Increase Software Quality”, In
Proceedings of the Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), November 1999.

Basili, V., Green, S., Laitenberger, 0.. Lanubile, F., Shull, F., Soerumgaard, S., and
Zelkowitz, M. “The Empirical Investigation of Perspective-Based Reading.” Empirical
Software Engineering: An International Journal, l(2): 133-1 64, 1996

7.2.3 Orthogonal Defect Classification

See Day One, Session 4 at http://sas.ivv.nasa.,oov/conclusion2003.ht1nJ .

See http://sarpresults.ivv.nasa.~ov/ViewResearch/l65/13.isp .

Robyn Lutz and Carmen Mikulski, “Empirical Analysis of Safety-Critical Anomalies
during Operations,” IEEE Transactions on Software Engineering, vol. 30, no. 3, March,
2004, pp. 172-180. (The most useful for guiding process improvement.)

Robyn Lutz and Carmen Mikulski, “On-Going Requirements Discovery in High-
Integrity Systems,” IEEE Software, vol. 21, no. 2, March-April, 2004, pp. 19-25. (The
most interesting to developers thinking of using ODC.)

Robyn Lutz and Carmen Mikulski, “Resolving Requirements Discovery in Testing and
Operations,” Proceedings of the 1 1 th IEEE Requirements Engineering Conference
(FU3’03), Sept. 8-12, 2003, Monterey Bay, CA, pp. 33-41.

Robyn Lutz, Tim Menzies, and Carmen Mikulski, “Better Analysis of Defect Data at
NASA,” Proceedings of the 15th International Conference on Software Engineering and
Knowledge Engineering (SEKE’03), July 1-3, 2003, San Francisco, CA.

Robyn Lutz and Carmen Mikulski, “Patterns of Software Defect Data on Spacecraft,”
International Conference on Space Mission Challenges for Information Technology
(SMC-IT’03), Pasadena, CA, July I3-16,2003.

14

Software Engineering Research/Developer Collaborations (C104) Final Report

Robyn Lutz and Carmen Mikulski, “Requirements Discovery during the Testing of
Safety-Critical Software,” Proceedings of the 25th lriteiiiational Conference on Software
Engineering (ICSE’03), May 3-10, 2003, Portland, OR, pp. 578-583.

7.2.4 Codesurfer

See littp://~~w~~.fzraiiimatecli.coiii~~~~oducts/codesurfer/overv~ew.lit~l .

7.2.5 Coverity SWAT

The new name for SWAT is Prevent. See littp://coverity.com/ .

15

